
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 7, JULY 1997 1105
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Abstract—Huygens’ principle is used to exclude inhomoge-
neous regions and ideal conducting regions from planar layered
structures. The fields in the inhomogeneous regions are modeled
by the finite-element method (FEM) with tetrahedral edge el-
ements in terms of the electric-field strength ~E~E~E. The fields in
the layered structure are described by an integral representation
of the electric-field strength ~E~E~E in terms of equivalent electric
and magnetic Huygens’ surface current densities for the inho-
mogeneous regions, and in terms of electric Huygens’ surface
current densities for ideal conducting regions. It is formulated
with the help of electromagnetic (EM) potentials resulting in
low-order singular integral kernels to facilitate the numerical
handling of the integral representation. A general formulation
of the integral representation is given for observation points
lying in the Huygens’ surface. As compared to the homogeneous-
space case, additional terms in the integral representation have
to be considered if parts of the Huygens’ surface lie in an
interface of layers with different material properties. An integral
equation is formulated and discretized by a Galerkin testing
procedure [boundary-element method (BEM)], together with the
finite-element (FE) system resulting in an unequivocal discretized
description of the entire field problem. The method is validated
with the help of a canonical test problem. Further numerical re-
sults are presented for dielectric resonators coupled to microstrip
circuits.

Index Terms— Boundary-element method (BEM), finite-
element method (FEM), Huygens’ principle, planar layered
medium.

I. INTRODUCTION

T HE mathematical formulation of Huygens’ principle al-
lows the calculation of electromagnetic (EM) fields in

a closed domain in terms of the tangential-field compo-
nents on the boundary of the domain and with the help of
the Green’s functions of the domain [1]. This fact can be
applied to separate complicated field problems into several
less complicated parts, which are connected by the boundary
conditions on the Huygens’ surfaces. The crucial point is
that after introducing the equivalent Huygens’ sources, the
regions exterior to the domain in which the Huygens’ integral
representation is applied are free of any fields and, therefore,
can be filled with arbitrary materials. So, in many cases,
solution domains can be constructed for which the Green’s
functions are known. This concept is widely used in surface
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integral equation techniques where ideal conducting objects
or dielectric objects in free space are replaced by equivalent
Huygens’ sources on a surface enclosing these objects. After
introducing the Huygens’ sources, the integral equation can
be formulated based on the free-space Green’s function [2],
[3]. If the excluded dielectric objects are homogeneous, the
interior regions can be described by an integral formulation
with a free-space Green’s function also. If the dielectric bodies
are inhomogeneous, they can effectively be modeled by a
local field calculation technique like the finite-difference (FD)
method or FEM. Practical implementations of such hybrid
approaches which have been published since the 1970’s are
usually working with the finite-element method (FEM) due to
its modeling flexibility [4]–[11]. A severe drawback of such
FEM/boundary-element method (BEM) hybrid approaches is
that the BEM part results in fully populated matrices often
making the method computationally intensive as compared
to a local method like FEM or the finite-difference time-
domain (FDTD) method combined with a local absorbing
boundary condition, resulting in a pure sparse system matrix
[7], [12]–[14]. Therefore, hybrid methods in free space are
mainly applied if one has a problem with some kind of
symmetry (bodies of revolution [9]) or advanced properties of
the hybrid method in dealing with several scattering objects or
difficulty in dealing with ideal conducting antenna structures
can be utilized [11].

The situation is quite different if we consider field cal-
culations in planar layered media, which can be used as a
model for a great class of practical problems (planar circuits,
geophysical applications, hyperthermia, etc.). Here, in many
cases, it is very difficult for pure local methods to give a sat-
isfactory description of the solution domain (very thin layers,
very thick layers, etc.). Most field calculation techniques for
layered media are based on integral formulations involving
Green’s functions. Research interest in this subject started
with the work of Sommerfeld in 1909 [15], [16] dealing with
the exact solution for the EM field of an electric Hertzian
dipole on a lossy dielectric half-space. The development of
analytical representations for the Green’s functions of the
layered medium by use of so-called Sommerfeld integrals
[17], [18] gave rise to the formulation of the first integral
equation techniques. Until now, due to the complexity of such
formulations, they are mostly restricted to the calculation of
planar circuits within the layered medium [19]–[22]. In [23],
a two-dimensional (2-D) method is presented, combining an
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integral equation formulation for homogeneous regions with an
integral equation formulation of the layered medium, allowing
field calculations in layered media with homogeneous finite-
sized disturbations. The first FEM/BEM-hybrid techniques for
planar layered media were suggested in [24], [25] for the 2-D
case, and in [26] for the three-dimensional (3-D) case. A more
complete description of the method in [26] was given in [27].

In this paper, the authors present a 3-D hybrid approach
combining the FEM for anisotropic media with a surface
integral equation formulation of the layered medium (i.e.,
BEM). First the model of the field problem is defined. Then
the FEM is summarized. The BEM is developed starting with
an integral representation of the electric-field strengthin
the layered medium based on Huygens’ principle. The integral
representation formulated with EM potentials is analyzed for
observation points in the Huygens’ surface. It is found that
in this case, the integral representation has to be modified
if parts of the Huygens’ surface lie in an interface between
layers with different material properties. This is due to the
fact that the singular character of the Green’s functions in the
layer interface is changed as compared to the homogeneous
space case. The modified integral representation is used for
the formulation of a mixed potential integral equation (MPIE),
which is discretized by the method of moments (MoM).
Numerical results for a canonical test problem and for the
coupling of dielectric resonators to microstrip circuits are
presented.

II. FORMULATION

A. Modeling the Field Problem

The field problem is considered for a suppressed time factor
. Applying Huygens’ principle [1], the entire solution

domain is separated into an inhomogeneous volume, ideal
conducting objects, and the remaining homogeneous planar
layered medium designated by according to Fig. 1. and
the ideal conducting objects can consist of several parts not
connected to each other. The EM fields inare modeled by
the FEM allowing nearly arbitrary inhomogeneous material
distributions within this part of the solution domain. The
volume is completely enclosed by the Huygens’ surface

. Ideal conducting objects are enclosed by the Huygens’
surface . is designated as . The fields in are
modeled by a surface integral representation of the electric-
field strength in terms of equivalent electric and magnetic
Huygens’ surface currents on and electric Huygens’ surface
currents on . After introducing the equivalent Huygens’
sources for the field representation in, the regions exterior
to are free of any fields and, therefore, can be filled with
arbitrary materials. In this paper’s case, materials are selected
which are necessary to obtain an undistorted planar layered
structure. So, for the integral representation of the fields in,
one can use the Green’s functions of the undistorted layered
medium. The integral representation in is transformed into
an integral equation relating the Huygens’ surface currents to
each other. The integral equation is discretized by a BEM
based on a Galerkin testing procedure.

Fig. 1. Model of the field problem.

Fig. 2. FE model of the inhomogeneous region.

The coupling of the FEM model of and the BEM
description in is given by the boundary conditions on

(1)

(2)

The boundary condition on (ideal conducting) is

(3)

is the outward normal on .
Both the FEM and the BEM result in coupled linear

algebraic systems of equations, which are solved in a manner
described in [11].

B. Finite-Element Method

The FEM is applied to the region in terms of the electric-
field strength according to Fig. 2. A weak formulation of
the field problem can be obtained by the functional

(4)

which is stationary for the solution of the field prob-
lem as well as for the solution of the adjoint field
problem [28]–[30]. and are the wavenumber and the
characteristic impedance of free space, respectively.is a
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possibly existing impressed current density. The functional is
discretized by subdomain expansion functions on tetrahedral
meshes

(5)

(6)

(7)

are edge elements (Whitney edge elements), which are
given by

(8)

, are nodes of the tetrahedrons and, are the barycentric
functions on the tetrahedrons. The fields modeled by these
expansion functions are free of spurious modes (nonphysical
solutions with nonvanishing divergence), because they only
impose the continuity of the tangential-field components be-
tween adjacent tetrahedrons. Enforcing the stationary state of
the functional with respect to the solution of the adjoint field
solution, after substituting the expansion functions, results in
a linear algebraic system of equations

(9)

with

(10)

(11)

(12)

(13)

The matrix elements can be evaluated analytically with the
help of [31] and taking into account the tensor forms of the
anisotropic materials.

C. Boundary-Element Method

In Fig. 3, the field problem is illustrated as it is treated in
the BEM. The electric-field strength in is described by
an integral representation in terms of the Huygens’ surface
current densities and on and . These current
densities are related to the tangential components of the field
strengths by

(14)

Due to the boundary conditions on , these field strengths
are directly coupled to the fields in . For ideal conducting

Fig. 3. Model for the integral equation formulation.

objects in enclosed by , vanishes and is
equivalent to the physical surface current density.

After introducing the equivalent Huygens’ current densities,
the fields in and in the ideal conducting regions due to
the integral representation vanish and, therefore, these regions
can be filled with arbitrary materials. This makes it possible to
use an integral representation based on the Green’s function
of an undistorted planar layered structure. To facilitate the
numerical handling of this integral representation, a so-called
mixed potential formulation is used:

(15)

The index stands for the source layer and the index
stands for the observation layer. is the electric-field
strength of incident fields in the observation layer.
is the dyadic Green’s function of the magnetic vector potential

, is the Green’s function for the electric scalar
potential, and is the dyadic Green’s function of the
electric-field strength for excitation with magnetic currents.

For a derivation of this formulation, especially of appro-
priate Green’s functions and , see [16], [27],
[32].

In order to formulate an integral equation, one has to
consider (15) for observation pointson the Huygens’ surface

(in the following, restricted to smooth Huygens’ surfaces).
However, this is not a severe restriction, because in the result-
ing BEM, piecewise-smooth Huygens’ surfaces are obtained.
Due to the testing procedure, the edges and corners of these
Huygens’ surfaces give no contributions within the BEM. It
is further assumed that the medium is layered with respect to
the -coordinate.

In the case , the integral kernels become singular.
The usual procedure to overcome this problem is to deform
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the Huygens’ surface in the vicinity ofin the form of a small
hemisphere (as it is illustrated in Fig. 4) and to analytically
evaluate the integral contributions of the hemisphere for a
vanishing radius of the hemisphere. If the Huygens’ surface
lies in a homogeneous material, the result of this calculation
is well known [2]. This result can be accounted for on the
left-hand side (LHS) of (15), resulting in

(16)

with all of the integrals to be evaluated in a Cauchy principal
value sense. If the Huygens’ surface is situated in an interface
between two layers with different material properties, this
result is no longer valid because the singular character of the
Green’s functions is changed as compared to the homogeneous
material case. To obtain the correct result, we can calculate
the hemispherical integral contributions for the quasi-static
image sources of the Green’s functions at the layer interface
and consider this contribution together with the homogeneous
material contribution. In a first step, the Huygens’ sources
is expressed in (16) by the associated field quantities. With

, one obtains for source-free regions

(17)

and, therefore,

(18)

is the surface divergence operator. Together with (14),
one obtains

(19)

Without loss of generality, one considers the configuration in
Fig. 5 with .

The hemispherical integral contribution of the magnetic
vector potential vanishes due to its low-order singularity. The
quasi-static image sources of the Green’s functions can be
obtained by asymptotically evaluating the Sommerfeld integral
representations of the Green’s function [17], [18], [32]. In this

Fig. 4. Deformed Huygens’ surface for~r = ~r0.

Fig. 5. Huygens’ surface in the interface between two layers.

paper’s case, can be written as

(20)

where only terms giving a contribution to the hemispherical
integral are considered. With

(21)

(22)

(23)

(24)

and

(25)

one obtains

(26)
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is the integration domain of the hemisphere. The evaluation
of the integrals is performed with the transformation

(27)

Considering

(28)

(29)

one finally obtains for vanishing

(30)

For , one obtains

(31)

With

(32)

one finds

(33)

If is below the layer interface, the calculations can be
performed analogously. In the result, the index has
to be replaced by . The results can be summarized to

(34)

with

(35)

is the -coordinate of the interface between layerand
layer .

Now an integral equation for the tangential-field compo-
nents in and can be formulated.

(36)

(37)

where the fact that the layer interfaces are parallel to the-
plane have been utilized. The integral equation is discretized
by vector expansion functions. Then the discretized equation is
transformed into a linear algebraic system of equations based
on a Galerkin testing procedure. With the help of some vector
analytical transformations [3], one finally obtains

(38)

with

(39)
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Fig. 6. Canonical test problem.

Fig. 7. jEj = ~E � ~E� along the axis ofV1, f = 5 GHz, 1: analytical
result, 2: numerical result.

(40)

(41)

(42)

(43)

with . The are the tangential
parts in the triangles on of the edge element-expansion
functions in the tetrahedrons of . They are also used
on . The resulting are equivalent to the current
expansion functions in [3]. and are the source and
testing subdomains, respectively. The evaluation of the matrix
elements is performed as described in [11], [27], [33]. Internal
resonances of the integral equation formulation are effectively
suppressed by the parasitic body technique [34], [35].

Fig. 8. Geometry of the dielectric resonator coupled to a microstrip line,
H = 7:5 mm,D = 14 mm, g = 11 mm, b = 2:25 mm andhs = 0:8 mm.

Fig. 9. FE model of the dielectric resonator coupled to a microstrip line.

III. A PPLICATIONS AND RESULTS

In a first example, the FEM/BEM-hybrid technique was
applied to a canonical test problem for which the analytical
result is known. A homogeneous plane wave propagating in
the -direction is incident on a layered structure consisting of
four layers (as illustrated in Fig. 6). The material properties
inside the cubical volume , which extends over two layers,
are equal to the material properties of the surrounding layers.
Thus, the field solution of the plane wave in the undistorted
layered structure has to be reproduced insideif the hybrid
method is applied. A comparison of the analytical solution to
the numerical results for the magnitude of the electric-field
strength (given in Fig. 7) shows excellent agreement be-
tween the two curves. If the additional terms of the generalized
form of the integral equation are not considered, there are large
errors—especially at the layer interfaces cm and
cm, as can be expected due to the local behavior of these terms.

In a second example, the coupling of a cylindrical dielec-
tric resonator operating in the TE mode to a microstrip
line is considered. A cross-sectional view of the geometrical
configuration is illustrated in Fig. 8. The FEM model of the
field problem is shown in Fig. 9. The dielectric resonator
is discretized with tetrahedral elements, and the ideal con-
ducting microstrip line is modeled with triangular boundary
elements in the BEM framework. It is excited by a-gap
voltage source. The 50-microstrip line was ideally matched
(dielectric resonator not present) with the help of the radial
stubs and two line impedances. Due to the matching of the
microstrip line, the -parameters can easily be determined
without de-embedding. curves for different distances
between resonator and microstrip line are given in Fig. 10.
In Fig. 11, the external quality factors of the resonator circuit
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Fig. 10. jS21j resonance curves for the dielectric resonator/microstrip con-
figuration in Fig. 9.

Fig. 11. External quality factorQex of the dielectric resonator in Fig. 9. 1:
numerical results. 2: measured results [36].

Fig. 12. FE model of the dielectric resonator coupled to a curved microstrip
line.

are compared to the measured results of [36]. The external
quality factors were determined with the help of the formulas
in [37]. Agreement between measured and numerical results is
very good. For reliable numerical results, the additional terms
of the generalized integral equation formulation are, again,
very important.

Finally, in a third example, the coupling of a dielectric
resonator to a curved microstrip line was investigated. The
finite-element (FE) model of the field problem is shown in
Fig. 12. The measures and material properties of the substrate,
the dielectric resonator, and the microstrip line are the same as
in the second example (see Fig. 8). As opposed to the second
example here, the 50- microstrip line is matched by via-
holes to the bottom reflector, together with line impedances
at the via-holes (see Fig. 12). In this case, less boundary
elements for the modeling of the matched microstrip line are
needed. The configuration was calculated for several distances
between the dielectric resonator and the microstrip line. The
results can be seen in Figs. 13 and 14 with the quality factors

Fig. 13. jS21j resonance curves for the dielectric resonator/microstrip con-
figuration in Fig. 12.

Fig. 14. External quality factorQex of the dielectric resonator in Fig. 12.
1: numerical results. 2: measured results [36].

determined with the formulas in [37]. The curves in Fig. 14
show slightly higher differences between the calculated results
and the measured results from [36] for the straight microstrip
line. This might be due to the fact that no exact values for
the radius of curvature of the curved microstrip line are given
in [36].

IV. CONCLUSION

Based on Huygens’ principle, a FEM/BEM-hybrid approach
for planar layered media was formulated. Anisotropic in-
homogeneous regions, as well as ideal conducting bodies,
were excluded from the layered medium and replaced by
equivalent electric and magnetic Huygens’ surface currents.
The inhomogeneous regions were modeled by the FEM with
tetrahedral edge element meshes. The fields in the layered
structure due to the Huygens’ sources were described by a
mixed potential integral representation for the electric-field
strength based on the Green’s functions of the layered medium.
A general formulation of the integral representation was given,
which is valid for observation points on the Huygens’ surface
even if the Huygens’ surface lies in the interface between two
layers. An integral equation was formulated and solved. Nu-
merical results for a canonical test problem and the coupling of
dielectric resonators to microstrip circuits were also presented.
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