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3-D FEM/BEM-Hybrid Approach Based
on a General Formulation of Huygens’
Principle for Planar Layered Media

Thomas F. Eibert and Volkert HanseMember, IEEE

Abstract—Huygens’ principle is used to exclude inhomoge- integral equation techniques where ideal conducting objects
neous regions and ideal conducting regions from planar layered or dielectric objects in free space are replaced by equivalent
structures. The fields in the inhomogeneous regions are modeled Huygens’ sources on a surface enclosing these objects. After

by the finite-element method (FEM) with tetrahedral edge el- . . , . .
ements in terms of the electric-field strengthE. The fields in introducing the Huygens’ sources, the integral equation can

the layered structure are described by an integral representation P€ formulated based on th? freg-space Green’s function [2],
of the electric-field strength E in terms of equivalent electric [3] If the excluded dielectric objects are homogeneous, the
and magnetic Huygens' surface current densities for the inho- interior regions can be described by an integral formulation
mogeneous regions, and in terms of electric Huygens’ surface with a free-space Green’s function also. If the dielectric bodies
current densities for ideal conducting regions. ItI is forr?ulated are inhomogeneous, they can effectively be modeled by a
with the help of electromagnetic (EM) potentials resulting in . ! . . e .

low-order sir?gular integral gkernels( to )fagilitate the numer?cal local field calculation technique like the finite-difference (FD)
handling of the integral representation. A general formulation Method or FEM. Practical implementations of such hybrid
of the integral representation is given for observation points approaches which have been published since the 1970's are
lying in the Huygens’ surface. As compared to the homogeneous- ysually working with the finite-element method (FEM) due to
space case, additional terms in the integral representation have its modeling flexibility [4]-[11]. A severe drawback of such

to be considered if parts of the Huygens' surface lie in an . .
interface of layers with different material properties. An integral FEM/boundary-element method (BEM) hybrid approaches is

equation is formulated and discretized by a Galerkin testing that the BEM part results in fully populated matrices often
procedure [boundary-element method (BEM)], together with the making the method computationally intensive as compared
finite-element (FE) system resulting in an unequivocal discretized tg g local method like FEM or the finite-difference time-
description of the entire field problem. The method is validated domain (FDTD) method combined with a local absorbing
with the help of a canonical test problem. Further numerical re- L N f
boundary condition, resulting in a pure sparse system matrix

sults are presented for dielectric resonators coupled to microstrip ! ’
circuits. [7], [12]-[14]. Therefore, hybrid methods in free space are

Index Terms— Boundary-element method (BEM), finite- mainly applied if one has a problem with some kind of

element method (FEM), Huygens' principle, planar layered SYymmetry (bodies of revolution [9]) or advanced properties of
medium. the hybrid method in dealing with several scattering objects or

difficulty in dealing with ideal conducting antenna structures
can be utilized [11].

The situation is quite different if we consider field cal-
HE mathematical formulation of Huygens’ principle alculations in planar layered media, which can be used as a
lows the calculation of electromagnetic (EM) fields irmodel for a great class of practical problems (planar circuits,

a closed domain in terms of the tangential-field compgeophysical applications, hyperthermia, etc.). Here, in many
nents on the boundary of the domain and with the help oéses, it is very difficult for pure local methods to give a sat-
the Green’s functions of the domain [1]. This fact can bigfactory description of the solution domain (very thin layers,
applied to separate complicated field problems into sevexary thick layers, etc.). Most field calculation techniques for
less complicated parts, which are connected by the boundiyered media are based on integral formulations involving
conditions on the Huygens’ surfaces. The crucial point Sreen’s functions. Research interest in this subject started
that after introducing the equivalent Huygens’ sources, thdth the work of Sommerfeld in 1909 [15], [16] dealing with
regions exterior to the domain in which the Huygens’ integréthe exact solution for the EM field of an electric Hertzian
representation is applied are free of any fields and, therefodépole on a lossy dielectric half-space. The development of
can be filled with arbitrary materials. So, in many caseapalytical representations for the Green’s functions of the
solution domains can be constructed for which the Greeragyered medium by use of so-called Sommerfeld integrals
functions are known. This concept is widely used in surfage7], [18] gave rise to the formulation of the first integral
equation techniques. Until now, due to the complexity of such

I. INTRODUCTION
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integral equation formulation for homogeneous regions with an
integral equation formulation of the layered medium, allowing ,
field calculations in layered media with homogeneous finite- KXA I
sized disturbations. The first FEM/BEM-hybrid techniques for Hi+3%+s L ECH ™
planar layered media were suggested in [24], [25] for the 2-D g, 8,5
case, and in [26] for the three-dimensional (3-D) case. A more // closed 5“‘;{‘“
complete description of the method in [26] was given in [27]. s v

In this paper, the authors present a 3-D hybrid approach #i+1%i+1 inhomogeneous ‘"ﬂj i
combining the FEM for anisotropic media with a surface Y

integral equation formulation of the layered medium (i.e., #i €
BEM). First the model of the field problem is defined. Then
the FEM is summarized. The BEM is developed starting with
an integral representation of the electric-field stren@thn
the layered medium based on Huygens' principle. The integral Himrfima

representation formulated with EM potentials is analyzed f@fy. 1. Model of the field problem.
observation points in the Huygens’ surface. It is found that
in this case, the integral representation has to be modified
if parts of the Huygens’ surface lie in an interface between
layers with different material properties. This is due to the
fact that the singular character of the Green'’s functions in the
layer interface is changed as compared to the homogeneous
space case. The modified integral representation is used for
the formulation of a mixed potential integral equation (MPIE),
which is discretized by the method of moments (MoM).
Numerical results for a canonical test problem and for the
coupling of dielectric resonators to microstrip circuits are
presented.

=
equivalent electric Jp
and magnetic ﬁA
Huygens' sources

closed surface

Fig. 2. FE model of the inhomogeneous region.

The coupling of the FEM model ol; and the BEM

Il FORMULATION description inV5 is given by the boundary conditions oty

A. Modeling the Field Problem (7)) % Ey(7) = A(7) X Eo(7) (1)

The field problem is considered for a suppressed time factor 7i(7) x Hy(7) = () x Ha(7). 2
est. Applying Huygens’ principle [1], the entire solution
domain is separated into an inhomogeneous vollimadeal
conducting objects, and the remaining homogeneous planar A7) x E(f‘) =0. 3)
layered medium designated b% according to Fig. 1V; and
the ideal conducting objects can consist of several parts o _ )
connected to each other. The EM fieldslinare modeled by BOth the FEM and the BEM result in coupled linear
the FEM allowing nearly arbitrary inhomogeneous materidlgebraic systems of equations, which are solved in a manner
distributions within this part of the solution domain. Thélescribed in [11].
volume V; is completely enclosed by the Huygens’ surface
Ag. Ideal conducting objects are enclosed by the Huygerfd: Finite-Element Method
surfaceA.. A. U Ay is designated ad. The fields inV; are The FEM is applied to the regiori in terms of the electric-
modeled by a surface integral representation of the electrfield strengthZ according to Fig. 2. A weak formulation of
field strengthZ in terms of equivalent electric and magnetiche field problem can be obtained by the functional
Huygens’ surface currents oty and electric Huygens' surface i 4 .
currents onA.. After introducing the equivalent Huygens’ b, B // [(V x E ()77 (V x E(F))—
sources for the field representationlii, the regions exterior

The boundary condition onl. (ideal conducting) is

fs the outward normal od.

to V5 are free of any fields and, therefore, can be filled with 2
arbitrary materials. In this paper’'s case, materials are selected (i) ( HJkOZOE (7) - Ja(7)] dv
which are necessary to obtain an undistorted planar layered + jko Oﬂ a(r) r) x (7)) da 4)

structure. So, for the integral representation of the fieldgin
one can use the Green'’s functions of the undistorted layered
medium. The integral representationt¥ii is transformed into which is stationary for the solutiol of the field prob-
an integral equation relating the Huygens’ surface currentslean as well as for the solutiorf, of the adjoint field
each other. The integral equation is discretized by a BEpMoblem [28]-[30].k, and Z, are the wavenumber and the
based on a Galerkin testing procedure. characteristic impedance of free space, respectivélyis a

Ag
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possibly existing impressed current density. The functional is NN
discretized by subdomain expansion functions on tetrahedral , \X\
meshes NN
N Miivadivg ,«(’AC EmC,H)mc A
E(f) = Z Un&n(r) (5) Hivzbive /7J
/ —~_ closed surface
n=1 / / Aq
- al o E o T ‘/ -~ Ve -
Eo(7) = Uldn(7) (6) ir1fiet |
n=1 B / - yi -
N i & /
H(f’) — Z In&n(f) (7) f_/ equivalent electri;‘ ‘?A
‘ and magnetic M4
n=1 “/ﬁ;\\ Huygens’ sources

&, are edge elements (Whitney edge elements), which are ;— — T -
given by it
Fig. 3. Model for the integral equation formulation.

Gn(7) = Wi (F) = VA, — A} VA, (8)

¢, j are nodes of the tetrahedrons angA; are the barycentric objects in V> enclosed byA., MA vanishes ande is
functions on the tetrahedrons. The fields modeled by th ivalent to the physical surface current density.

expansion functions are free of spurious modes (nonphysicalfier introducing the equivalent Huygens’ current densities,
solutions with nonvanishing divergence), because they Oy fields inV; and in the ideal conducting regions due to
impose the continuity of the tangential-field components bgye integral representation vanish and, therefore, these regions
tween adjacent tetrahedrons. Enforcing the stationary state:g pe filled with arbitrary materials. This makes it possible to
the functional with respect to the solution of the adjoint fielse an integral representation based on the Green’s function
solution, after substituting the expansion functions, results §i an undistorted planar layered structure. To facilitate the

a linear algebraic system of equations numerical handling of this integral representation, a so-called
[Sn][Un] = KLl [Un] + 5k0Zo U] [Ln] mixed potential formulation is used:
= —jkoZo[Vm], nym=1,---,N © g = o // G () T () da!
with A
(S :///(v X @ () - fir "t (V X @(7) dv (10) - V// G, 7 ply () da!
Lfl A
T = [[[ )5 ) 1) + [ S5 G da + B ),
. A
(15)
Uk = @)+ (60079  7) da 12)
The indexi stands for the source layer and the index

Vlm (13)  strength of incident fields in the observation layert™ (7, 7*)

A stands for the observation Iay@inC:nl is the electric-field
_ / / / G (F) - Jul) dv.
Vi is the dyadic Green'’s function of the magnetic vector potential

T AT o , . .
The matrix elements can be evaluated analytically with tﬁé’ G ) (7 l?mfhf (jrgen s funct!on for tr?e eIeanc scalar
help of [31] and taking into account the tensor forms of theotential, andzy; (i, 7") is the dyadic Green’s function of the

anisotropic materials. electric-field strengtiFj for excitation with magnetic currents.
For a derivation of this formulation, especially of appro-
C. Boundary-Element Method priate Green’s functiongz*”" and G®™', see [16], [27],

2].

In Fig. 3, the field problem is illustrated as it is treated ||[1 In order to formulate an integral equation, one has to

the BEM. The electric-field strength in ¥ is described by consider (15) for observation poinfon the Huygens’ surface

an mte;g(;al riprse;entag?\;[ n te;ms 0‘; tAhe I:rtjygens sun;a%e(in the following, restricted to smooth Huygens’ surfaces).
current densiies’4 and M4 on Aq and .. These curren wever, this is not a severe restriction, because in the result-

dtensm;]s at:e related to the tangential components of the fi BEM, piecewise-smooth Huygens’ surfaces are obtained.
strengths by Due to the testing procedure, the edges and corners of these

fA(F) =7(7) x ﬁ(f’) Huygens’ surfaces give no contributions within the BEM. It
J\ZIA(F) = — ii(7) x E(f‘). (14) is further assumed that the medium is layered with respect to

the z-coordinate.
Due to the boundary conditions at,, these field strengths In the caser = +, the integral kernels become singular.
are directly coupled to the fields i¥i;. For ideal conducting The usual procedure to overcome this problem is to deform
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the Huygens’ surface in the vicinity &fin the form of a small
hemisphere (as it is illustrated in Fig. 4) and to analytically
evaluate the integral contributions of the hemisphere for a
vanishing radius of the hemisphere. If the Huygens’ surface
lies in a homogeneous material, the result of this calculation
is well known [2]. This result can be accounted for on the
left-hand side (LHS) of (15), resulting in

1 —
2 ’)—‘J”// ) JaT Y’ =V //Gé“ﬁ
Fig. 4. Deformed Huygens' surface for= 7.

pA(ﬁ)da/Jr//fo(ﬁﬁ)-MA(mda’
_i_E"l’im(F)7 FeA (16) layer interface /‘\ layer m

layer m—1

nd

with all of the integrals to be evaluated in a Cauchy prmmpal ¥
value sense. If the Huygens’ surface is situated in an interface

between two layers with different material properties, this

result is no longer valid because the singular character of $8g 5. Huygens’ surface in the interface between two layers.
Green'’s functions is changed as compared to the homogeneous

material case. To obtain the correct result, we can calculg@per’s caseGM can be written as

13-

the hemispherical integral contributions for the quasi-static 0 —=2 0
image sources of the Green’s functions at the layer mterfacgEmm(a ) = e —em| o %, .
and consider this contribution together with the homogeneous * ’ AT em_1 +em \ 2 2 0
material contribution. In a first step, the Huygens’ sources 3 _r_’gz, y
is expressed in (16) by the associated field quantities. With 1 fme1 — fim 0, P )
T — e I ; _ ; — | =& 0 z_
V x H'(7) = jwe E*(¥), one obtains for source-free regions 47 fon1 + i %,,3 0 i
— 7 = 3% [ = 1 =/ — (i /=
) - B () = @) - (V) x B() (20)
1 .. where only terms giving a contribution to the hemispherical
- _jwsv - (7(7) x H'(7)) integral are considered. With
1 1’ =1’ cos ¢’ sin’ (21)
=———V.a - J4(7) = —p4(7 a7)
JWe; A € Al 1y =1’ sin ¢’ sin ¢’ (22)
and, therefore, 7 =1’ cos ' (23)
‘ N cos ¢’ sin’
P (7) = (A7) - £ (7). (18) 7 (i) = — & = — | sing’ sin®’ (24)
cos?y
V.a- is the surface divergence operator. Together with (14)
one obtains
1 Lo . HAMi - ol G i i = / ( ) X (7_')
§E (ﬂ:_Jw//G (7)) - (f(7") x H'(7")) da y(f')cosﬁ - E.(7 )singa’sinz?’
4 COS(p sin 7 COs
7 ¥ — 9 (25)
_ V// G2 (7, ey (7 (7) - B (7)) dad E (") sing’ sind — (7 )Cos<p sin ¢’
one obtains
//Gﬂm (7, 7) - (7 (7) x E'(7)) da’ —//G%} (7 7) - (@' () x E™(7")) dd’
Ao
cos? ¥/
+E1nc,m(7—3)' (19) 1 ey —%E;n(f/) 1,,221?,
= 4_m7 // _%E;n(f'/)coi,;) da’
Without loss of generality, one considers the configuration in T Em—1 7+ Em yh Em(fr)sirfzﬂ’
Fig. 5 with # = (0,0, 0). 1 finet — o - '
The hemispherical integral contribution of the magnetic t

47T Him—1 + Hm

+21 > B (7)) (cos? ¢ + sin 29’)

+ 5w B (7)) (cos® & + sin® ') | da’.  (26)
0

vector potential vanishes due to its low-order singularity. The
quasi-static image sources of the Green’s functions can be
obtained by asymptotically evaluating the Sommerfeld integral X /
representations of the Green’s function [17], [18], [32]. In this Ao
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Ag isthe integraltion domain of the hemisphere. Thg evaluation _ —jw // 5AW'(? K f,ﬁ(?’)da’
of the integrals is performed with the transformation

A
S -5 _ T —-V E"m - —v‘
// da’:27r/ o sinddd. (27) V//G (7 7)pa(7) da +//GM )
0 A
Ao

( )da _i_Emcrn(—*)’ (34)
Considering
with
ERE 1 z=d
cos” ¥ sin?dd¥ = = 28 - ) ©
/0 3 (28) 2.4 { 0. L d (35)
z 2
/ sin® ' dy = 3 (29) d,,. is the z-coordinate of the interface between layerand
0 layer m — 1.
one finally obtains for vanishing’ ne,r\:tc;WiniT 'ga%gzl Esﬁfleo?o:r(:]rultgtee Jangenﬂal-ﬂeld compo-
—// G (R (@ (7) x B (7)) dd! A7) % K% v i{M
! Emtl T Em
Ao
—Lpm (6) Hm+l — Hm } ) Lm —*:|
_ 12z \7, ——— %0 _a, E™(r
= 76771_1 Em —%E,nl(()) Bm+tl + Z’dm+l ( ) FEAg
Em—1t&Em lEnly((‘)’)
37z o oami o, =
s — o [KEE®) = (i) x (o [[ G4 @) Tat) da
m—1 — Hm i =
+——— | zE™(0 30
fm—1 4 pom \ 4 %( ) (30) e U:d
—V//G‘I’ (7 7)p'y (7) dd’
For VG®, one obtains AlUA,
/ i . N
s 1 . - 1 - // GE 7—»77—4 z 7—1 da/+E1nc,nl P
VGE ([, 7) = fmoi=Em L) @y M M (™) (7)
ATEm Em—1 + Em T Py FCAg
(36)
With .
) 0 = () x [—jw [ & - T ae
A (7) - E(7) = —(cos ¢ sin® Ex(7) + sing’ sin ¥ Ey (7) AL,
oo VE(7) ) [ e [ o e
one finds A UA,
_v / / G2 (7 em (7 (7) - (7)) da! M (7)) dd’ + Eim:m(f)l (37)
Ao e
2 af
1e —%E;"(F’ )% where the fact that the layer interfaces are parallel tozthe
=1 = Emol T m // —1Em()smg | da plane have been utilized. The integral equation is discretized
mem—1tem .. Em(i)ycost ! by vector expansion functions. Then the discretized equation is
_;Em((j) ' transformed into a linear algebraic system of equations based
_Em-1~"€m —SEf"(ﬁ) (33) on a Galerkin testing procedure. With the help of some vector
Em—1t€m l%,f{(ﬁ) ' analytical transformations [3], one finally obtains
6z
If V, is below the layer interface, the calculations can be [A1n]lUn] = = [Buallln] + [Cou]lLn] = [Dra][Un] + [,
performed analogously. In the result, the index— 1 has Ln=1--- N (38)
to be replaced byn + 1. The results can be summarized to ith
wi
1E’m — lepmar —em gfn({? A] _// Em+l — Em Nm:l:l — Hm
5 (7) + ZE +1t+¢ 4 (7) 111 Emtl T Em Hmtl + fbm
m m _2E;n(7—‘)
Ern 3 N -
_ lumzl:l — Hm Ef"gg 5 4 X (52 dm+1>an(f§ . [3[(7) da, Ay C Ay
i+ 1 \ P 0, aca (39)
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£ =10 | £=10
r”l ‘ 2 Iu‘rzl -
A V1 S N S
&=2 | £,.=2 Fig. 8. Geometry of the dielectric resonator coupled to a microstrip line,
—q _ H=75mm,D =14 mm,g =11 mm,b = 2.25 mm andh; = 0.8 mm.
Iu’r_'1 | Iu’r_1
L0
e=1 !
Mrzl ! )r«_,,
N
-
I [E|=100V/m

Fig. 6. Canonical test problem.

110 | - — Y <

100 (

90 ‘l A Zap source

80 |
E 70 & Fig. 9. FE model of the dielectric resonator coupled to a microstrip line.
~ 60 |
=
50 - il
B o4y . e 2 I1l. APPLICATIONS AND RESULTS

30 : - ) . .

0 05 1.0 15 20 25 30 In a first example, the FEM/BEM-hybrid technique was

7z 1l cm —

Fig. 7. |E| = VE - E* along the axis ofV;, f = 5
result, 2: numerical result.

(Bl =jv / | i / [e @)

GHz, 1: analytical

applied to a canonical test problem for which the analytical
result is known. A homogeneous plane wave propagating in
the z-direction is incident on a layered structure consisting of
four layers (as illustrated in Fig. 6). The material properties
inside the cubical volumé&7, which extends over two layers,
are equal to the material properties of the surrounding layers.
Thus, the field solution of the plane wave in the undistorted
layered structure has to be reproduced indigef the hybrid

™) da’ da (40) method is applied. A comparison of the analytical solution to
Ol =— — // V- /31 ;)// ae™ ;774 the numerical results for the magnitude of the electric-field
strength £/ (given in Fig. 7) shows excellent agreement be-
tween the two curves. If the additional terms of the generalized
X VA /3 ) da’ da (41) form of the integral equation are not considered, there are large
[D = / / G / / Gf;“ (7 ) ﬁn(T )da' da, errors—especially at the layer interfaces- 0 cm andz = 3
cm, as can be expected due to the local behavior of these terms.
A, C Ad In a second example, the coupling of a cylindrical dielec-
tric resonator operating in the 7 mode to a microstrip
=0, An C Ae (42) line is considered. A cross-sectional view of the geometrical
(43) configuration is illustrated in Fig. 8. The FEM model of the

(Gt = / () - B (7) da
Ay

field problem is shown in Fig. 9. The dielectric resonator
is discretized with tetrahedral elements, and the ideal con-

with f3,(7) = 7 x @.(7). The @,(7) are the tangential ducting microstrip line is modeled with triangular boundary
parts in the triangles oni, of the edge element-expansiorelements in the BEM framework. It is excited by/sgap
functions in the tetrahedrons of;,. They are also used voltage source. The 5Q-microstrip line was ideally matched
on A.. The resultingﬁn(F) are equivalent to the current(dielectric resonator not present) with the help of the radial
expansion functions in [3]4,, and A; are the source andstubs and two line impedances. Due to the matching of the
testing subdomains, respectively. The evaluation of the matrixcrostrip line, theS-parameters can easily be determined
elements is performed as described in [11], [27], [33]. Internalithout de-embedding|Ss;| curves for different distances
resonances of the integral equation formulation are effectivédgtween resonator and microstrip line are given in Fig. 10.
suppressed by the parasitic body technique [34], [35]. In Fig. 11, the external quality factors of the resonator circuit
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1.0 C——— 1.0 — ]
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0.8 ‘ 0.7 N d=Zmm {
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i | 0.8 ’s\\ / r/ |
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f in GHZ — g f in GHz ——w=—
Fig. 13. |S21]| resonance curves for the dielectric resonator/microstrip con-

Fig. 10. |S21| resonance curves for the dielectric resonator/microstrip Coﬂguration in Fig. 12

figuration in Fig. 9.
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) ) ) ) o Fig. 14. External quality facto€.x of the dielectric resonator in Fig. 12.
Fig. 11. External quality factof).. of the dielectric resonator in Fig. 9. 1: 1: numerical results. 2: measured results [36].

numerical results. 2: measured results [36].

e e determined with the formulas in [37]. The curves in Fig. 14
T show slightly higher differences between the calculated results
- and the measured results from [36] for the straight microstrip
S line. This might be due to the fact that no exact values for
the radius of curvature of the curved microstrip line are given
in [36].
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> ) IV. CONCLUSION

_ _ _ _ Based on Huygens’ principle, a FEM/BEM-hybrid approach
FE model of the dielectric resonator coupled to a curved mlcrostr|18r planar layered media was formulated. Anisotropic in-
homogeneous regions, as well as ideal conducting bodies,
were excluded from the layered medium and replaced by
are compared to the measured results of [36]. The extergguivalent electric and magnetic Huygens' surface currents.
quality factors were determined with the hE|p of the fOfmU'a‘ﬁhe inhomogeneous regions were modeled by the FEM with
in [37]. Agreement between measured and numerical result3dgrahedral edge element meshes. The fields in the layered
very good. For reliable numerical results, the additional ternggucture due to the Huygens' sources were described by a
of the generalized integral equation formulation are, agaimixed potential integral representation for the electric-field
very important. strength based on the Green'’s functions of the layered medium.
Finally, in a third example, the coupling of a dielectricA general formulation of the integral representation was given,
resonator to a curved microstrip line was investigated. Thehich is valid for observation points on the Huygens’ surface
finite-element (FE) model of the field problem is shown ieven if the Huygens’ surface lies in the interface between two
Fig. 12. The measures and material properties of the substréagers. An integral equation was formulated and solved. Nu-
the dielectric resonator, and the microstrip line are the samenagrical results for a canonical test problem and the coupling of
in the second example (see Fig. 8). As opposed to the secéliglectric resonators to microstrip circuits were also presented.
example here, the 5Q- microstrip line is matched by via-
holes to the bottom reflector, together with line impedances REFERENCES
at the via-holes (See Flg' 12)' Inthis casg, Iess_ b(_)undar J. C. Monzon, “On surface integral representations: Validity of Huygen’s
elements for the modeling of the matched microstrip line are * principle and the equivalence principle in inhomogeneous bianisotropic
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